Group actions, revisited

Recall: If a group G acts on a nonempty set A, then for every $g \in G$, the function
$\sigma_{g}: A \rightarrow A$ defined $\sigma_{g}(a)=g \cdot a$
is a bijection, and the function

$$
\varphi: G \rightarrow S_{A} \text { defined } \varphi(g)=\sigma_{g}
$$

is a homomorphism. The kernel of φ is called the kernel of the action, and the action is faithful if the kernel is the identity.

Note: The kernel of the action K is a normal subgroup and we can give G / K an action on A as follows:

$$
g K \cdot a=g \cdot a .
$$

Check this is well-defined: If $g K=h K$ then $g=h k$ for some $k G K$.

$$
\begin{aligned}
\Rightarrow g \cdot a=h k \cdot a= & h \cdot(\underset{\uparrow}{k} \cdot a)=h \cdot a \\
& \text { acts as identity }
\end{aligned}
$$

Then $G / k \cong \operatorname{im} \varphi \leq S_{A}$, so it has trivial kernel, so it's faithful!

Group actions from maps to S_{A}

We can also get group actions from morphisms to S_{A}. i.e. if A is a set and G a group st.
$\varphi: G \rightarrow S_{A}$ is a homomorphism, define the group action of G on A as follows:

For $g \in G, a \in A, \quad g \cdot a=\underbrace{\varphi(g)}_{\text {This is }}(a)$
a bijection
$A \rightarrow A$
This is in fact an action (axioms are easy to check), and all actions of G on A arise in this way. i.e.

Prop: There is a bijection between the actions of G on A and the homomorphisms $G \rightarrow S_{A}$.

Def: If G is a group, a permutation representation of G is any homomorphism $G \rightarrow S_{A}$, for some nonempty set A, thus giving an action of G on A.

Orbits and stabilizers

Let G be a group acting on a set A. Recall from a HW problem that we can define an equivalence relation oh A as follows: $a \sim b \Longleftrightarrow a=g \cdot b$, some $g \in G$.

We already showed this is an equivalence relation, and the equivalence classes are called orbits. For $a \in A$, the equivalence class containing a is called the orbit of a.

Note that the stabilizer of $a, \quad G_{a}:=\{g \in G \mid g \cdot a=a\}$ gives us no additional elements of the orbit of a, and in fact, each coset of Ga gives us an additional element of the orbit of a. That is,

Prop: For $a \in A$, the number of elements in the orbit of a is $\left|G: G_{a}\right|$.

Pf: We show that there is a bijection between the cosets of G_{a} and the ells of the orbit of a. Call the orbit θ_{a}.

We define a map $\quad \sigma_{a} \rightarrow$ cosets of G_{a} by

$$
b=g \cdot a \longmapsto g G_{a} .
$$

This is well-defined: If $b=g \cdot a=h \cdot a$, then $h^{-1} g \cdot a=a \Rightarrow h^{-1} g \in G_{a}$. Thus, $\left(h^{-1} g\right) G_{a}=1 G_{a} \Rightarrow g G_{a}=h G_{a}$.

This is clearly surjective, and it's injective since if $g G_{a}=h G_{a}$, then $h^{-1} g \in G_{a} \Rightarrow h^{-1} g \cdot a=a \Rightarrow g \cdot a=h \cdot a$.

Def: The action is transitive if there's only one orbit. i.e. if $\forall a, b \in \mathbb{A} \quad \exists g \in G$ ct. $a=g \cdot b$.

Ex: S_{n} always acts transitively on $\{1, \ldots, n\}:$ if $a, b \in\{1, \ldots, n\}$, $(a b) \cdot a=b$.

